New York State Science Learning Standards January 9, 2019

Why New Standards?

Our previous standards were more than 20 years old!

Most states based their current K-12 science standards on reports dating back nearly twenty years! Since that time, we've made major advances in science and technology and gained a better understanding of how students learn these subjects.

- New York State's Learning
 Standards for
 Mathematics, Science and
 Technology (1996)
- Shift from teaching answers to teaching questions

"Izzy, did you ask a good question today?"

The question that the mother of 1944 Nobel physics laureate Isidor Rabi asked him every day when he got home from school

Building on the Past;Preparing for the Future

Development of current NYS Science Learning Standards & statewide assessments

Assessment

Curriculum

Professional Development

Material and Resource Support

Administrative and Community Support

How is teaching and learning different with the New York State Science Learning Standards?

How are these standards different and why change?

Current state assessments aren't changing for a while, should we do anything now?

Absolutely: improved teaching practices and student learning

What is new in NYSSLS?

Three Dimensional learning refers to the thoughtful and deliberate <u>integration of three distinct dimensions</u>:

- Scientific and Engineering Practices (SEPs)
- Disciplinary Core Ideas (DCIs)
- Crosscutting Concepts (CCCs)

Students will learn the science content by <u>doing</u> the Science and Engineering Practices.

Students constructing understandings by engaging in

SEPs

Moving Forward with NYSSLS

- Science and Engineering Practices (SEPs)
 - How students learn.
 - Behaviors of scientists and engineers as they question, investigate and solve problems. i.e. inquiry AND engineering design process
- Cross Cutting Concepts (CCC's)
 - What students look for.
 - Concepts (ex. patterns) that bridge disciplinary boundaries and need explicit instruction in both science and engineering
- Disciplinary Core Ideas (DCI's)
 - What students learn.
 - Physical Sciences; Life Sciences; Earth & Space Sciences;
 Engineering, Technology & Applications of Science

Science and Engineering Practices

- 1. Asking questions (science)/defining problems (engineering)
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data
- 5. Using mathematics and computational thinking
- 6 Constructing explanations (science) and designing solutions (engineering)
- 7. Engaging in argument from evidence
- 8. Obtaining, evaluating and communicating information

Seven Crosscutting Concepts

(application across all domains of science)

- 1. Patterns.
- 2. Cause and effect: Mechanism and Explanation.
- 3. Scale, proportion, and quantity.
- 4. Systems and system models.
- 5. Energy and matter: Flows, Cycles, Conservation.
- 6. Structure and function.
- 7. Stability and change.

New Standards Address Four C's and STEAM

What are 21st century skills? These 4 C's:

C

COMMUNICATION

Sharing thoughts, questions, ideas & solutions C

COLLABORATION

Working together to reach a goal. Putting talent, expertise, and smarts to work C

CRITICAL THINKING

Looking at problems in a new way and linking learning across subjects & disciplines C

CREATIVITY

Trying new approaches to get things done equals innovation & invention

Disciplinary Core Ideas

Life Science	Physical Science	
LS1: From Molecules to Organisms Structures and Processes LS2: Ecosystems: Interactions, Energy, and Dynamics LS3: Heredity: Inheritance and Variation of Traits LS4: Biological Evolution: Unity and Diversity	PS1: Matter and Its Interactions PS2: Motion and Stability: Forces and Interactions PS3: Energy PS4: Waves and Their Applications in Technologies for Information Transfer	
Earth & Space Science	Engineering & Technology	
ESS1: Earth's Place in the Universe	ETS1: Engineering Design ETS2: Links Among Engineering, Technology, Science, and Society	
ESS2: Earth's Systems		
ESS3: Earth and Human Activity		

SCIENCE EDUCATION WILL INVOLVE LESS:	SCIENCE EDUCATION WILL INVOLVE MORE:	
Rote memorization of facts and terminology	Facts and terminology learned as needed while developing explanations and designing solutions supported by evidence-based arguments and reasoning	
Learning of ideas disconnected from questions about phenomena	Systems thinking <u>and modeling to explain</u> phenomena and to give a context for the ideas to be learned	
Teachers providing information to the whole class	Students <u>conducting investigations, solving</u> <u>problems, and engaging in discussions</u> with teachers' guidance	
Teachers posing questions with only one right answer	Students discussing <u>open-ended questions</u> that focus on the strength of the <u>evidence</u> <u>used to generate claims</u>	
Students reading textbooks and answering questions at the end of the chapter	Students <u>reading multiple sources</u> , including science-related magazine and journal articles and web-based resources; students developing summaries of information	
Pre-planned outcome for "cookbook" laboratories or hands-on activities	Multiple <u>investigations driven by students</u> ' questions with a range of possible outcomes that collectively lead to a deep understanding of established core scientific ideas	
Worksheets	Student writing of journals, reports, posters, and media presentations that explain and argue	
Oversimplification of activities for students who are perceived to be less able to do science and engineering	Provision of <u>supports so that all students</u> can engage in sophisticated science and engineering practices	

Math Science M4. Models with mathematics S1: Ask questions and define M1: Make sense of problems S2: Develop & use models problems and persevere in solving them S5: Use mathematics & S3: Plan & carry out investigations M2: Reason abstractly & computational thinking quantitatively \$4: Analyze & interpret data M6: Attend to precision S6: Construct explanations & E2: Build a strong base of knowledge M7: Look for & make design solutions through content rich texts use of structure E5: Read, write, and speak

M8: Look for & make use of regularity in repeated reasoning

E6: Use technology & digital media strategically & capably

M5: Use appropriate tools strategically

grounded in evidence

M3 & E4: Construct viable arguments and critique reasoning of others

> S7: Engage in argument from evidence

S8: Obtain. evaluate, & communicate information

E3: Obtain, synthesize, and report findings clearly and effectively in response to task and purpose

Commonalities Among the Practices in Science, Mathematics and English Language Arts E1: Demonstrate independence in reading complex texts, and writing and speaking about them

E7: Come to understand other perspectives and cultures through reading, listening, and collaborations

ELA

Moving Forward with NYSSLS

Elementary Science will be more important than ever!!

Logical development of the 3D through the grade levels.

NGSS has a K-12 Progressions in Appendices This is a strength of NGSS which is also NYSSLS Themes develop as children mature.

Scope and Sequence

Grade	Physical Science	Earth & Space Science	Life Science
5	Structure and Properties of Matter	Earth Systems	Matter and Energy in Organisms and
		Space Systems: Stars and the Solar System	Ecosystems
4	Energy	Earth Systems: Processes that	Structure, Function and Information
	Waves: Waves and Information	Shape the Earth	Processing
Forces a	Forces and Interactions	Weather and Climate	Interdependent Relationships in
			Ecosystems
			Inheritance and
			Variation of Traits: Life Cycles and Traits
2	Structure and	Earth's Systems:	Interdependent
	Properties of Matter	Processes that Shape the Earth	Relationships in Ecosystems
1	Waves: Light and	Space Systems:	Structure, Function,
	Sound	Patterns and Cycles	and Information Processing
	Forces and Its	Weather for	Animals, Plants and
	Interactions: Pushes & Pulls	Kindergarten	Their Environment:
K	rulis		Survival, life cycles
	Matter and Its	112-1-22	
	Interactions: Solids and Liquids		

What's happening now?? NYS Comprehensive Science Standards Implementation Plan

Pinpoints 3 phases – systematic transition to new standards aligned with the Strategic Plan for Science.

Phase I: Initial transition-raise awareness and build capacity

Phase II: Transition and implementation (We are in this phase currently)

Phase III: Implementation and Sustainability

Not a timeline. Earliest new state assessments?? Grade 4 test moves to grade 5 in 2022??

Transition to NYSSLS for classrooms

- Then why do anything?
- Improved teaching and learning! We don't need to its teach to the cores and exams.
- Begin by adapting what is currently done. Understand the Conceptual shifts to student driven 3D instruction.
- Look for Professional Learning opportunities for teachers to adapt to NYSSLS.
- Start changing lessons. Use phenomena, teach content by engaging in practices. Permission to Fail!!!

Your old science class!

What NYSSLS looks like in action

https://www.teachingchannel.org/videos/clai ms-evidence-science-lesson-achieve

OUR "WHY"...

The top 10 skills in 2020 will be:

- 1. Complex problem solving
- 2. Critical thinking
- 3.Creativity
- 4.People management
- 5. Coordinating with others
- 6.Emotional intelligence
- 7. Judgment and decision-making
- 8. Service orientation
- 9. Negotiation
- 10. Cognitive flexibility

OUR WHY...

"Stop Teaching Answers

Start Teaching Questions!"

Erno Rubik